ar X iv : h ep - p h / 03 07 14 5 v 1 1 0

نویسنده

  • NIKOLAOS KIDONAKIS
چکیده

with k → 0 the gluon momentum, p the quark momentum after emission of the gluon, v a dimensionless vector v ∝ p, and I have omitted overall factors of gs T c F with g 2 s = 4παs and T c F the generators of SU(3) in the fundamental representation. The eikonal approximation has numerous phenomenological applications in QCD, including threshold resummations for a variety of QCD processes [1, 2, 3, 4, 5, 6]. In these applications we are mainly interested in the ultraviolet (UV) pole structure (in dimensional regularization) of one-loop, two-loop, and higherloop eikonal vertex corrections. In this talk, I discuss explicit calculations of one-loop and two-loop eikonal vertex corrections for diagrams with massive and massless partons and show that the n-loop UV poles are given simply in terms of the one-loop result [7].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 03 04 14 0 v 1 1 5 A pr 2 00 3 Vector particles in Quasilocal Quark Models

We consider the Quasilocal Quark Model of NJL type including vector and axial-vector four-fermion interaction with derivatives. The mass spectrum for the ground and first excited states is obtained. The chiral symmetry restoration sum rules in these channels are imposed as matching rules to QCD at intermediate energies and a set of constraints on parameters of QQM is performed.

متن کامل

ar X iv : h ep - p h / 03 02 18 5 v 1 2 0 Fe b 20 03 Nonlinear corrections to the DGLAP equations ; looking for the saturation limits ∗

The effects of the first nonlinear corrections to the DGLAP equations are studied in light of the HERA data. Saturation limits are determined in the DGLAP+GLRMQ approach for the free proton and for the Pb nucleus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003